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Abstract—This paper presents a theoretical investigation of the transfer of momentum, heat and
mass in incompressible viscous flow through a logarithmic spiral channel. The velocity, temperature
and concentration profiles are calculated by the direct integration of the ordinary differential equations
obtained from the governing transfer equations by means of the similarity transformation technique.
Numerical results are obtained for the shear stress and the rates of heat and mass transfer at the
channel walls. As a special case, the analytical solution in a closed form is given for circular Couette
flow. Results may be applied to the vapor-heated Rosenblad-type spiral plate heat exchanger and the
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NOMENCLATURE
arbitrary constant, dimensionless;
arbitrary constant, dimensionless;
arbitrary constant, dimensionless;
integration constants, dimensionless;
specific heat per unit mass {fi?/h? degF};
—afb, dimensionless;
mass diffusivity [ft2/h];
function of variable 7, dimensionless;
F'(3p), dimensionless;
conversion factor;
function of variable , dimensionless;
function of variable », dimensionless;
a function in the »-0 plane, = u(r, §) for momentum transfer; = T{(r, 9) for heat
transfer; == x(r, 6) for mass transfer, dimensionless;
integration constants, dimensionless;
thermal conductivity of fluid [Btu/h ft degF];
Nusselt number as defined by equation (21), dimensionless;

¥

o Prandtl number, dimensionless;

P 8e . .

—-, dimensionless;

fiid

pressure [Ibf/f?];

elliptic function of Weierstrass, dimensionless;
s

p3’

dimensionless;
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Xw,

B,
B2,

Ba,
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volumetric rate of internal heat generation in fluid [Ilbm/h3 ft];
heat flux [Btu/h ft2];

D2

rg .
° dimensionless;

A

molar rate of production of species 4 in fluid [mols/h ft3);
Reynolds number as defined by equation (15), dimensionless;

e radial distance in polar co-ordinate, dimensionless, ry is  at 51 and rz is r at 2
0

for circular Couette flow case;

radial distance in polar co-ordinate [ft];
characteristic length [ft];

v . . .
— Schmidt number, dimensionless;

D
Sherwood number as defined by equation (26), dimensionless;
CpTrd
Vﬂ— dimensionless;
Cp TW (} .
e , dimensionless, Tw1 == Tw(n1) and Tws = Tw(n) for circular Couette flow
case;

fluid temperature [°F];
wall temperature [°F];

og\? 1 ap\2v2 ) .
[(5,) + (r 66) ] , dimensionless;

urg |, .
—, dimensionless;
14

average fluid velocity, dimensionless;
ﬂ_uid velocity [ft/h];

W .
—, dimensionless;
v

volumetric rate of fluid in channel [ft3/h ft];

x . .
, dimensionless;
X0
concentration of species 4 [mols/ft3];
reference concentration (or concentration at logarithmic spiral channels) of
species 4 [mols/ft3], xw1 = xw(n1) and xw2 = xw(nz) for circular Couette flow case;
thermal diffusivity [ft2/h];
Feliz — rily

——5—~, dimensionless;
-

1
rirg(rern —ri u1)
rg—r?

l
) = exp (—an) {[n1 exp (—an1) — nz exp (—an2)] fa

+ Twe exp (—anz) — Twi exp (—am)}, dimensionless ;

, dimensionless;

exp ( a"qz
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{B2 Pr [exp (an1) — exp (an2)] + Twi — Twe}, dimensionless;

-+ xwa exp {an2) — xwi exp (an)}, dimensionless;

1
n e
1
Bs, eXp‘(E;&ﬁ)dﬂ“~éi§”(anlj {P exp (1) — nzexp (an2)] Be
1
" T

Greek symbols

[4xw1 exp (an1) + Se R] [exp (—an) — exp (—ana)]
+ 4{xw1 exp [alnr — n2)] — xwz}), dimensioniess.

7, variable, dimensionless;

8, angle in polar co-ordinate, radians;

v, kinematic viscosity [ft2/h];

P, fluid density [Tbm/ft3];

b, angle formed by % and the positive r-axis, dimensionless;
Xs variable, dimensionless;

B(r, 0, o dimensionless;

first, second, third, and fourth derivatives with respect to 7;

Hr, 9), Stokes stream function [ft2/h].
Superscripts

I’ II’ "il’ flf!’
Subscripts

r, radial direction;

8, angular direction;

av, average;

( s function evaluated at a constant 7.

INTRODUCTION
THE CLASSICAL problem of the “spiral flows” of
incompressible viscous fluids was first studied
by Jeffery [1] and Hamel [2]. Hamel considered a
two-dimensional motion, known as “Hamel’s
flows” in which the streamlines coincide with
an isometric family of curves. These curves were
proved to be a set of logarithmic spirals 2, 3].
By employing the Stokes stream function defined
as a function of the logarithmic spiral, he was
able to reduce the Navier-Stokes equation of
motion for an incompressible plane flow to an
ordinary differential equation. The general
integration of this differential equation was per-
formed by Olsson and Faxén [4]. In their solu-
tion the technique for the numerical evaluation
of the velocity profile involves a graphical
construction and requires considerable effort.

Oseen [5] has generalized Hamel’s considera-
tions by defining the stream function in a more
general way. This flow is classified as “Oseen’s
flow”. Further discussions of the spiral flows
have been given by Rosenblatt [6] and Birchoff
[7]. Recently equations of heat and mass
diffusion in spiral flows have been reduced to
ordinary differential equations through the use
of the similarity transformation technique {[8].
General exact solutions of these differential
equations are obtained [9].

This paper presents the momentum, heat and
mass transfer in incompressible flow through a
logarithmic spiral channel. The partial dif-
ferential equations governing fluid motion, heat
transfer and mass transfer are reduced to the
ordinary differential equations by the similarity
transformation technique. The functions which
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determined the velocity, temperature and con-
centration profiles are evaluated. Numerical
results are obtained for the shear stress and the
rates of heat and mass transfer at the channel
walls. As a special case, the analytical solution
in a closed form is given for circular Couette
flow. Results may be applied to the vapor-
heated Rosenblad-type spiral plate heat ex-
changer and the cooling of bearings.

ANALYSIS
The physical system analysed is shown in

200
o
160
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Fig. 1. It consists of an incompressible fluid
flowing steadily through a logarithmic spiral
channel formed by curves B and C which may be
expressed in the form

2
N = e a2 + bz ((1 In ¢ + be) (l)
The channel walls B and C are assumed at
uniform temperature 7w for heat-transfer
analysis and at uniform concentration xw for

mass-transfer analysis.
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FiG. 1. A family of logarithmic spirals n and x fora = +1and b = +1L
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1. Momentum transfer
If the Stokes stream function is defined as

i(r, 0) = F(n) 2
such that
1 o
T e
and
o
Uy = 8_r

express the velocity components in the radial
and circular directions, then the Navier—
Stokes equation for incompressible plane flows
in polar co-ordinates

1oV, 4)
VY =15, r

may be reduced to the ordinary differential

equation

F'"" 4 2aF " + (a2 + ) F" +bF' F" =0.
€)

Through the substitution of G =F' and
then integrating once, equation (3) becomes

2

b
G + 2aG’ + (a® -+ b3 G + ‘g =K @

where K is an integration constant. The general
integration of equation (4) is performed by
Olssen and Faxén [4] for the case of

[(a + b2)2 __51§aJ

The solution is given as

G :}) [12 (%‘z)z exp [— (4/5) an]

P {exp [— (2/5) an) + K1, 0, Ko} + (‘;)2 n bz]
®)

where p is the elliptic function of Weierstrass.
The velocity profile is

2G
F@ ©

u —=

The no-slippage condition on the channel
wall requires that the integration constants
K1 and K. in equation (5) must satisfy the
boundary conditions for zero velocity: G(1) = 0
and G(y2) = 0, where n; and %2 are the two
walls of the channel. Due to difficulty in deter-
mining Ki and K3, a technique involving graphical
construction was applied for the numerical
evaluation of velocity profiles [4]. This requires
considerable effort. Fortunately the advent of
the computing machine permits one to obtain
the function G(n) by numerical integration.

The shear stress is obtained as follows:

Consider a function J(r, 6), which represents
the velocity u(r, ) for momentum transfer, the
temperature 7(r, §) for heat transfer and the

concentration x(r,6) for mass transfer, and
its rate of change in the direction of

__ 2 bl 6 7

X—ag+b2( nr—a) ()

which is orthogonal to ». If n makes an angle ¢
with the positive r-axis, then the directional
derivative of J in the direction of y may be
written as

of 8J

8J
5}(— sm ¢ + 36 ©°8 ¢ (8)

where the direction sine and cosine are

_Ir___ b
A Y )
and
J,
sing = - a

J T V(@+ b

respectively. Therefore the shear stress, defined

as v = — (0u/0y), may be expressed as
_ 2(2G' + aG)
(n) = RP@EE )

At the spiral channel walls 7; and %s, where
G(n1) = 0 and G(»2) = 0, the wall shear stresses
are

G'(n)

(1) = +_ ~ g2 €XP (a1 — by) (10)
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and
m(ng) = -5 4G () exp (ana — by) (11
a? -+ b X
respectively.

Pressure is obtained from reference 6 as

4 exp (ay — by)

a® + bt
[G-G"+dy+ G"dy + G’ (adx -+ b dp)). (12)
The integration of equation (12) yields

dP = — L dU2 -+

p— 2 41 B2 G L aG — K1.(13)

4
@+ bl

The average fluid velocity is defined as

| :
gy == -~ J. udy
7}2 U

T

since the volumetric rate of fluid flow in the
channel is

2
W:jud?y =

m

2
V@ TR

N2

' Gln) exp [(an — b0/2) - dy (14)

m
and the cross-sectional area of the channel is
{52 — m1) per unit thickness. The hydraulic
diameter of two logarithmic spiral planes
located a distance (n2 — 71) apart in the ortho-
gonal (or y) direction is 2 (n2 — m1). Using this
in the definition of the Reynolds number results
in

Re == 2uyy (772 - 7}1} = 2? U d’f' (15)

K]
1t is interesting to compare this result with the
potential flow of the classical theory. By this
theory the potential flow must satisfy Ad =
This results in

F(y) = Cin + Ca. (16)
The velocity profile for the case is
2Cy a7

N
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The integration constant C; in equation (16)
has to be determined by the volumetric rate of
fluid flow in the spiral channel. By equating the
volumetric rate in viscous flow as expressed by
equation {14) to that in potential flow which is

B

j exp [(an — b2 - dn

i

W oo 20,
RV

one obtains

} G(n) exp [(m; - &x)/z} dn

Cy =
f exp i(a*? - bx)/Z] dv?

T

Equation (17) reveals that the velocity is simply
inversely proportional to the distance from the
inlet, This indicates that the potential flow
velocity has its maximum at the inner channel
wall.

I, Heat transfer
Energy equation including viscous heating
terms may be expressed as

oT uMT 1 dT)
r (*r+ r o8 Prlrér rE‘r:

(ST ‘our\® 1 {dup 12
70 )]

T e
1 dur Uy ‘
" L a " dr( )] (%)

in polar co-ordinates. Through the transforma-
tion of

T(r, 6) — Tw =
(n) _
for = exp (an - bx) - H(m1 (19)
equation (18) may be reduced to the ordinary
differential equation
H' 4 2aH 4 (24 b2+ bPrGYH

G? , . 206G

If the spiral channel walls %, and %2 are at
uniform temperature Ty, then the function
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H(n) in equation (20) has to satisfy the boundary
conditions

H(y1) = 0 and H(n2) = 0.

The temperature gradient in the x direction may
be obtained from equation (8) as

oT 2

a AV +n’
Since along a constant x line, the average tem-

perature difference between a channel wall and
the fluid is

(T— TW)av =

+ aH).

Ny
1
Lo | H e @ — by gy
N2 — M
131
and the characteristic length is 2 (52 — 71),
therefore, one can define the Nusselt number as

29 (n2 — 1)
Nt = T = T
_ 2(8T]0x)y (n2 — m)’

(T — T W)av (21)

Then the Nusselt numbers at the spiral channel
walls 71 and 72 be expressed as

4 (r2 — m)? H'(n) exp [3/2 (an — by)]

Nu (m) = w
V/(@® + b%) | H(y) exp (an — by) - dy
(22)
and
Nu (y3) = 4 (12 — m)? fl '(n2) exp [3/2 (anz2 — by)]
V(@ + b?) | H(n) exp (an — byx) dy
" 23)
respectively.

II1. Mass transfer

In case of mass transfer, the mass equation in
the polar co-ordinate for a flowing fluid with
internal mass generation:

Ox  up Ox

“or T o
1 1o/ ox 1 2x
=§[;5r(’“ar) 72"@72]4"’*

may be reduced to the ordinary differential
equation

1" —2al’ + (@ + b2 —bScG)I

2.4 B2
4+ j ScR=0  (24)
by the transformation
x(r,0) — xw =r21(n)
[or = exp (by —an) - I())].  (25)

The boundary conditions to be imposed on the
spiral channel walls %; and 72 at uniform con-
centration Xw are

I(n1) =0 and I(y2) = 0.
Along a constant y line, one has
ox 2r ,
- V@rn@ D
as the concentration gradient,

Ui

j I exp (by — an) - dy

U]

X —X = —
( W)av n2 — M

as the definition of the average concentration
difference, and 2 (52 — #1) as the characteristic
length. Using these expressions in the definition
of the Sherwood number results in

Sh (n) = 3(32‘; a‘i)/fcn?i)i m)

(26)

Then at the spiral channel walls % and %3, the
Sherwood numbers may be written as

4 (n2 — m1)* I'(m) exp [1/2 (bx — m1)]

Sh () = =
V(@ + b [ I(y) exp (by — ar) - dn
@7
and
Sh (g 4 (12— L) exp [1/2 (b — )]

V(@ + B) | I(n) exp (by — an) - dn

(28)
respectively.

By applying the analogy between heat and
mass transfer, results for heat transfer due to
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the internal heat generation in a fluid with
negligible viscous heating may be obtained
from equations (24) through (28) by replacing
Xfor T, yw for Tw, Sc for Pr, R for Q and Sh for
Nu.

SPECIAL CASES
Two limiting special cases which have im-
portant applications are to be analysed. They
are the radial flow in channels (¢ = 0) and the
circular Couette flow (b = 0).

(i) Radial flow in channels

Rosenblatt [6] has obtained the exact solution
for the velocity distribution in radial flow,
a = 0, as an elliptic function of 8. Considerable
effort is required for numerical evaluation of his
solution.

Results for heat and mass transfer may be
readily obtained from the preceding analysis by
merely substituting @ = 0.

(i) Circular Couette flows
For the circular Couette flow, b = 0, equa-
tion (4) may be integrated to give

K
G = (c3 + cam) exp (—an) + 5.

Since y as expressed by equation (7) is propor-
tional to @ for this case, the condition of con-
stant pressure in the circular direction has to be
be satisfied. This condition which is obtained
from equation (12) as G”' -+ aG" = 0 reduces
equation (4) to the first order differential equa-
tion

WEN-JEI YANG

aG" + a®G = K. (29)

If u1 and us are respectively the velocities of

two concentric walls with radii ; and rs, then

equation (29) is integrated to give
a 2

G'(r) = 5 (Bur® + B2) (30)

The velocity profile between the concentric walls

may be obtained from equations (6) and (30) as

Be

u = pir + o €20

The Reynolds number, shear stress and pressure
distribution as respectively defined by equations
(15), (9) and (13) become

Re = Bi(r: — r3) + 2Ba1n :1

T—"""z——ﬁl
2,2 2
P:-Bzz——z%—FZﬁlﬁzlnr.

The function H(n) for heat transfer, defined as
r2T(r, 0) for this special case, may be obtained
by the integration of equation (20) for b = 0:

H(n) = (5 + com) exp (—an) — B3 Pr.

Therefore from equation (19), one obtains the
temperature profile in the fluid between the two
concentric walls maintained at uniform tem-
peratures Ty and T2 as

T(n) = Bs + B ~- B3 Prexp (an).  (32)

The Nusselt numbers, as defined by equation (21), are
4 (1 — n2) [aB Prexp (an1) — Ba] exp [(a/2) 1]

Nu(n1) = 2 p S ]
a4 [33 + @25 (n + 72) — Glﬁ—i',%)—a [exp (am1) — exp (an2)] — TWl]

Nt (o) = (1 — 72) [af} Prexp (anz) — Balexp [(@/2)m2]
a [33 + %(771 + n2) — “‘.1*(777‘12 irnz) [exp (an) — exp(anz)] — Twz]

In case of mass transfer, the function I(y), defined as 72x(r, 6) for this special case, may be ob-
tained by the integration of equation (24) for b = 0:

Sc R

I =(C7 + Cgn)exp (an) — —4—-
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Therefore the concentration profile in the fluid between the two concentric walls maintained at

uniform concentrations xw1 and xwzg is

x(n) = Bs -+ Ben

Sc¢ R
— 4 Xp (—an). (33)

The Sherwood numbers, as defined by equation (26), are

Se R

22— m) (0 exp @D m + 5 exp [~ @D

Sh (1) = Sy —
Bs + %6 (. 4 m2) + SZaR exp ( aﬂ;z — fyzp( ane) _ xw (1)
2
20— m) (lexp @2 72 + 75 exp 1= @)l
Sh (n2) =

Sc R
Bs + % O+ m2) + -5 .

exp (—ani) — exp (—an2)
71— M2

- xw (12) .

RESULTS AND DISCUSSIONS

Depending on the selection of a and b, one can
construct an infinite number of logarithmic
spirals  and y as expressed by equations (1)
and (7) respectively. A family of these spirals is
graphically presented in Fig. 1 for @ = +1 and
b = 1. An explanation for the combination
of this family of orthogonal functions is given
in Table 1. In the following discussion, a repre-
sentative logarithmic spiral channel with two
walls at 71 = 0 and 52 = 1-0 is selected for the
study of momentum, heat and mass transfer.
The ratio of @ and b is varied in order to investi-
gate the effects of the geometrical configuration
of the logarithmic spiral channel on the trans-
port phenomena.

The functions G(z), H(y) and I(y) which de-
termine the velocity, temperature and concen-
tration distributions respectively were evalu-
ated by the numerical integration of equations
(4), (20) and (24) using an IBM 7090 digital
computer. One representative numerical re-
duction is given in Table 2 fora = 1, b = 1,
K =15392, Pr =1, Sc = 1 and R = 1. Using
these functions the velocity, temperature and
concentration profiles, as expressed by equations
(6), (19) and (25) respectively, are evaluated at
four different cross sections y = —1,0, 1 and 2
and are presented in Figs. 2, 3 and 4 respectively.
The velocity profile in potential flow as ex-
pressed by equation (17) is also presented in Fig.
2 for comparison with the viscous flow case.

a=1, b=1 a=1, b= —1] a=—1, b= a= —1, b= —1
7 X i X K X ki X
A —1-0 —1-0 10 1-0
B 0 0 0 0
C 1-0 10 —~10 —1-0
D 2:0 2:0 2.0 —2:0
E 30 30 ~30 —30
F 40 40 —40 —40
G 30 —30 30 —30
H 20 —2-0 2:0 —2:0
I 1-0 —1-0 10 —10
J 0 0 0 0
X -1-0 10 —1-0 10
L —2:0 20 -2:0 2.0

H.M3Y
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Table 2. G(y), H(n) and Kn) functions fora = 1,b = 1,Pr=1,8c=1, R = 1, K = 1-539200
ki Gln) G'(m) G Hin) H(m) H () i(n) () ()
[} 0-00000 — 122962 397078 0-00000 0-58142 —4- 15081 400000 0-20377 —~0-09543
[1 3] -{011228 —0-82282 3-40311 004299 0-23439 232431 002172 0-18969 -0-16649
62 —017841 —0-50817 289644 0-05696 006302 123645 003972 016905  —0-24843
63 ~021554  —024214 2-43134 0-05843 —0:02272 —~0-57082 005523 013956 —0-34324
o4 —022832 —0-02042 2:01060 0-05407 —0-05857 —020671 0-06730 009999  —0-44997
05 —0-22095 016144 1-63380 0-04753 — {06961 —0-05009 0-07485 0-04919 — 056786
46 ~{-19721 0-30773 129871 0-04040 —0-07271 — 002963 07672 —-0-01393 —3-69643
07 —0-16046 0-42248 1-00229 0-03289 —{-07859 —0-09210 0-07162 — 009043 - 0-83559
08 -~0-11365 0-50937 0-74129 0-02439 —~0-09339 —0-19820 0-05816 —0-18139 —0-98570
09 —-0-05940 0-57181 0-51261 0:01382 —0-11988 —0-31918 0-03482 —0-28794 —1-14760
i-0 000000 0-61288 0-31344 0-00000 —0-15842 —(43435 0-00000 —0-41134 —1-32269
Y ¥ T H T T T
O8r 4
—__VISCOUS FLOW
- _POTENTIAL FLOW
0.7 .
A
]
r osr 1
g . ]
B S s
@ o5k DN
> —
o« e
7 e
G L=
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g [
z AR
o2~/ ~fo_ NN
e fom f o i e T 20 N —
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Fig. 2. Velocity distribution in logarithmic sp

Figure 2 demonstrates that the maximum ve-
locity in viscous flow is shifted to the outer
channel wall by centrifugal effects. The velocity
for potential flow is simply proportional to
the distance from the inlet. Therefore its
velocity is greater at the inner channel wall.
As illustrated in Figs. 3 and 4, the maximum
temperature and concentration are shifted
to the outer and inner channel walls res-
pectively. A comparison of velocity distri-
bution at the cross-section y == 0 is presented in
Fig. 5 for different values of a and b. It shows
that for the same value of K the velocity profile
decreases in magnitude and the location of the
maximum velocity shifts to the outer channel
wall as the absolute value of a/b increases. For

iral channels for ¢ = 10, b = 1-0 and K = 1-5392.

potential flow, the velocity decreases at the outer
channel wall and increases at the inner wall as
|a/b| increases. Similarly comparisons are given
for the temperature and concentration distri-
butions in Fig. 6 for Pr = Se = R = 1-0. It is
observed that as the absolute value of a/b in-
creases, the temperature profile decreases in
magnitude with its maximum shifted toward the
outer channel wall, and the concentration profile
increases in magnitude with its maximum
shifted toward the inner wall.

The influence of the Prandtl number on the
Nusselt number as defined by equations (22)
and (23) is illustrated in Fig. 7. It shows that at
low values of the Prandtl number the Nusselt
number approaches a fairly constant value.
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Fic. 4. Concentration distribution in logarithmic spiral channelsfora= 1,0 =1, S¢c=land R == 1,

However, with an increase in the Prandtl
number, the Nusselt number follows a rapid
increase. Figure 8 demonstrates that the influence
of the Schmidt number on the Sherwood num-
ber, as defined by equations (27) and (28) is
very small at low values of the Schmidt number.

In the range of high Schmidt numbers, the
Sherwood number follows a rapid decrease with
an increase in the Schmidt number.

It is most interesting to study the relationships

between the flow condition and the rates of trans-
port of momentum, heat and mass. Figures 9 and
10 show that the wall shear stresses =(y1) and
7(ns) as defined by equations (10) and (11) vary
with the Reynolds number in two distinct man-
ners: First, along the channel with a given in-
ward flow, the wall shear stresses increase along
a constant K line with an increase in the Rey-
nolds number by the = o Re? relationship.
This increase in the Reynolds number is related
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FiG. 8. Effect of Sc on Sk for R = 0-1.

to the variation of the cross-sectional area along
the channel. Second, if the change in the Rey-
nolds number is due to the change of flow rate
in the channel then the wall shear stresses in-
crease along a constant x line by the 7 o« Re
relationship. The shear stress at the inner wall
then increases more rapidly above a certain
value of the Reynolds number. Only two repre-
sentative cases, for « = 0, b = 1 corresponding
to the radial channel flow case anda =1, 5 = 1
corresponding to the flow in the channel as
illustrated in Fig. 1, are included here as Figs.
9 and 10. However, an extensive study on differ-
ent sets of a and b (which is not presented here
in the interest of brevity) reveals that as the
absolute value of a/b increases, the wall shear
stresses decrease for a given ¥ and Re and their
difference becomes more distinct. It is easy to
realize that the forementioned phenomena are
merely due to the difference in the geometrical
configuration of the spiral channels.

The characteristics of dual variation with the
Reynolds number is also observed in the rates
of heat and mass transfer. Figures 11 and 12
illustrate the relationship between the Nusselt
and Reynolds numbers for ¢ = 0, b = 1 and
a = 1, b = 1 respectively. Along the channel
with a given inward flow, the Nusselt numbers
Nu (m1) and Nu (n2) increase along a constant K
line with an increase in the Reynolds number
by the Nu oc Re relationship; whereas at a given
cross-section in the channel, the Nusselt num-
bers vary with the Reynolds number along a
constant y line. They approach a fairly constant
value at very low values of the Reynolds number
following a rapid increase with an increase in
the Reynolds number. A more and more dis-
tinct difference between the two Nusselt num-
bers is observed as the absolute value of a/b
increases. Figures 13 and 14 give the relation-
ship between the Sherwood and Reynolds
numbers for the mass source of R = 1-0, The
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FI1G. 9. 7 vs Re between logarithmic spiral channels
7 =0 and 5, = 1-0 with a = 0 and b = 1-0.

Sherwood numbers Sk (1) and Sh (n2) increase
very rapidly along the channel wall for a given
flow; whereas at a given cross-section in the
channel, the Sherwood numbers approach a
fairly constant value at low values of the Rey-
nolds number following a decrease with an in-
crease in the Reynolds number. The comparison
of Figs. 13 and 14 indicates that the difference
between Sh (1) and Sh (n2) becomes more and
more distinct as the absolute value of a/b
increases.

The velocity, temperature, and concentration
are represented in Fig. 15 for circular Couette
flow, another interesting special case. This
corresponds to two concentric circular channels
withp; = 0and y2 = 1-0 (or r; =06 and rp =
1-0); inner one at stationary and outer one
rotating with tangential velocity of unity.
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FiG. 10. 7 vs Re between logarithmic spiral channels
7, = 0and 9, = 1-0 witha = 1-0 and b = 1-0.

Figure 15 shows that the maximum value of the
temperature profile is shifted toward the rotating
wall while that of the concentration profile
toward the stationary wall, irrespective of the
Prandtl number and the strength of mass source.

CONCLUSIONS
From this theoretical study, the following
conclusions are reached:

1. The maxima of the velocity and tempera-
ture profiles in viscous flow shift toward
the outer channel wall, whereas that of the
concentration profile shifts to the inner
wall. Only for the radial plane flow, all
profiles have their maximum at the center
of the channel.

2. For a specified fluid with a given flow, as
the absolute value of a/b increases, the
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FIG. 13. Shvs Re for Sc = R = 1-0 between logarith-
mic spiral channels »; = 0 and 9, = 0 with a =0

and b = 1-0.

velocity and temperature decrease in mag-
nitude accompanied by the shift of their
maxima to the outer channel wall, while
concentration increases in magnitude ac-
companied by the shift of its maximum to
the inner channel wall.

. At low values of the Prandtl number, both

the Nusselt and Sherwood numbers ap-
proach a fairly constant value. But with an
increase in the Prandtl number, the former
increases while the latter decreases.

. The shear stress, Nusselt and Sherwood

numbers vary with the Reynolds number in
two distinct ways: Firstly, if the change in
the Reynolds number is due to the change of
flow rate along the channel, then the wall
shear stress changes as the second power,
the Nusselt number changes linearly and
the Sherwood number changes as the fifth
power of the Reynolds number. Secondly,
if the change in the Reynolds number is
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FIG. 14. Shvs Re for Sc = R = 1-0 between logarith-

mic spiral channels », = 0 and », = 1-0witha = 1-0
and b = 10.
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Fic. 15. Velocity, temperature and concentration
distribution in circular Couette flow for a = 1-0,
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due to the change of flow rate in the
channel, then as the Reynolds number in-
creases, the wall shear stress follows a
rapid change and, the Nusselt and Sher-
wood numbers approach a fairly constant
value at low Reynolds numbers following
an increase in the former and a decrease in
the latter as the Reynolds number in-
creases.
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Résumé—Cet article présente une recherche théorique du transport de quantité de mouvement, de
chaleur et de masse dans I’écoulement visqueux incompressible i travers un canal en spirale logarith-
mique. Les profils de vitesse, de température et de concentration sont calculés par intégration directe
des équations différentielles ordinaires obtenues a partir des équations de transport au moyen d’une
technique de transformation par similitude. Des résultats numériques sont obtenus pour la contrainte
de cisaillement et les vitesses de transport de chaleur et de masse aux parois du canal. On donne,
comme cas spécial, la solution analytique explicite pour I’écoulement de Couette circulaire. Les résul-
tats peuvent étre appliqués a I'échangeur de chaleur & plaque spirale du type de Rosenblad et le
refroidissement des paliers.

Zusammenfassung—Die Arbeit behandelt eine theoretische Untersuchung von Impuls-Energie- und
Stoffaustausch in inkompressibler, zdher Strémung in einem Kanal von der Form einer logarith-
mischen Spirale. Geschwindigkeits-, Temperatur-
Integration der gewohnlichen Differentialgleichungen errechnet, die mit Hilfe der Ahnlichkeits-
transformation aus den Transportgleichungen erhalten werden. Numerische Ergebnisse wurden fiir
Schubspannung und den Wérme- und Stoffstrom an den Kanalwinden erhalten. Als Spezialfall ist die
analytische Losung in geschlossener Form, fiir die kreisformige Couette-Stromung angegeben. Die
Ergebnisse lassen sich auf den dampfbeheizten Rosenblad Spiralplatten-Wirmeiibertrager und die
Kiihlung von Lagern anwenden.

und Konzentrationsprofil werden durch

Ansoranna—CraTbs IOCBEIEHA TEOPETHYECKOMY HCCIEOBAHMIO IepeHoca KOJUYecTBa
ABUMEHUA, Teljla I BellleCTBA IIPU TEUEHHH HECHKUMAaeMO} BA3KOU MKUIIKOCTH Yepes KAaHAT B
BHjie JorapuMudeckoii cnupaim. Paccuuranbl mpo@uii CKOPOCTH, TEMIIEPATYPH 1 KOHIEHT-
panuMm IyTeM HeNOCPeACTBEHHOI0 MHTerPHPOBAHUA OOBIKHOBeHHHIX Au(depeHHaTbHbIX
YPaBHEHMIt, MOJy4YeHHBIX INpeo0pasoBaHMAMU IIONOOMA MCXOJHBIX YDaBHEHUIl mepeHoca.
IMonydensl 4MciIeHHEIE Pe3yJbTATH JJIA HANPAMEHUA CHBUIA, A TaK¥e HOTOKOB TeIa U
BelIeCTBA HA CTeHKax KaHama. Hak yacTHEIl caydait npUBOSUTCA aHAINTUYIECKOE PELICHIEe B
3aMKHYTO} (JOpMe IJIg KPYTOBOTO KYSTTOBCKOIO TedeHUA. [loiyueHHHIE Pe3yJIbTATHL MOMKHO
NMPUMEHUTh K pacdeTaM OXJIaMIEeHUA MOAINIHMKOB U PaboTaloIlUX HAa [apy CIUPAIbHBIX
MIaCTUHYATEIX TelIo00OMeHHUKOB THna Posernbiafma.



